

219 Westbrook Road Ottawa, ON, Canada, K0A 1L0

Toll free: 1-800-361-5415 Telephone: 1-613-831-0981 Fax: 1-613-836-5089 sales@ozoptics.com

RED/GREEN/BLUE LASER ENGINES, COMBINERS AND DELIVERY SYSTEMS FOR THREE TO FIVE VISIBLE WAVELENGTHS

PRELIMINARY

Features

- Generate and combine up to five visible wavelengths within 390 nm to 710 nm
- Accept any size of TO-can style laser diodes
- Small footprint and compact size
- Each laser diode can be changed/upgraded independently
- Key element of developing surface relief and holographic waveguides
- Multimode, singlemode, and polarization maintaining fiber versions
- High power handling
- · Low insertion losses and low return losses

Applications

- Virtual Reality and Augmented Reality Devices
- White light displays
- Confocal microscopy
- Laser spectroscopy
- Fluorescence microscopy
- Color holography and imaging systems
- Flow cytometry

Product Description

OZ Optics' low-cost and robust three to five laser diode engine is carefully engineered to be adaptable, compact and to ensure excellent power and spectral stability. Combining the attributes of OZ Optics' patented tilt alignment system with the symmetry of a glass cube, a single solid optical element directs three laser beams into one port. This design not only provides a more rugged assembly than using discrete WDM plates, but also incorporates identical optical path lengths of the RGB beams, offering balanced spot sizes with low beam divergence, desired for many applications and emerging technologies.

A common application today is the combination of visible laser light of different wavelengths into a single fiber. Such systems are used in a variety of applications where one wants to produce full color images. By combining red, green and blue light and varying the intensities of the signals, one can reproduce practically any color desired. For example, one of the most common emerging requirements is for a white light laser source. OZ Optics uses custom optics and dichroic filters to combine efficiently three to five visible lasers into a common output port.

OZ Optics' line of RGB (Red/Green/Blue) combiners provides a complete method to deliver full color laser light from a singlemode, polarization maintaining or multimode fiber. The RGB combiner can be provided as a pigtailed passive device or as a low profile RGB laser engine with or without built-in laser diode drivers to combine light from three to five

1

different wavelengths (red, green, and blue are the most common) to generate output light that is white in appearance from a single fiber. By varying the relative intensities of the individual transmitted visible lasers, one can generate a spectrum of colors.

The RGB system combines light from at least three sources into a common output fiber. The fiber is protected with a rugged, flexible cable. The light from the output fiber can be collimated using an optional achromatic collimator to give near ideal Gaussian beams ranging from 0.6 mm to 10 mm in diameter. Alternatively, achromatic focusers can be supplied to focus the light to spots only a few microns in diameter. Refer to our data sheets titled *Collimators and Focusers-Receptacle Style*[†] and *Collimators and Focusers-Pigtail Style*.* In addition to complete RGB laser sources, OZ Optics offers Turnkey Standalone RGB Sources. For more detail about this product visit: https://www.ozoptics.com/ALLNEW_PDF/ DTS0117.pdf

[†] https://www.ozoptics.com/ALLNEW_PDF/DTS0094.pdf * https://www.ozoptics.com/ALLNEW_PDF/DTS0060.pdf

Channel	Violet	Blue-Violet	Green	Yellow	Red-Yellow		
	For five wavelength version			For five wavelength version			
Available wavelengths (nm) ¹	390-410	400-488	500-550	565-600	580–710		
Output power from fiber (mW) ²	0–50						
Long-term power stability ³	Typically <5% peak-to-peak			Typically <2% peak-to-peak			
Short-term power stability ³	Typically <0.5% peak-to-peak			Typically <0.5% peak-to-peak			
Polarization extinction ratio (dB) ⁴	>18 dB						
Wavelength stability ⁵	Typically ±0.1 nm						
Output fiber type ⁶	For singlemode fiber, polarization maintaining fiber, multimode fibers, and free-space propagation						

RGB Specifications With Built-in Laser Diode

¹ These are standard center wavelengths. Typical tolerances vary from ±5 nm to ±20 nm depending on laser diode manufacturer. Contact OZ Optics if a specific wavelength is required. For yellow 565 nm while we do not have a LD built in we can provide an external port.

² Maximum output power is limited by filter type used and laser diode maximum output power factor.

³ Depends on source wavelength, power level and other options. Refers to typical values achieved over a period of 8 hours for the long-term case and 1 minute for the short-term case after 30 minutes warm up time and at median operating output powers.

⁴ With polarization maintaining fiber only.

⁵ Achieved with TEC controller included. Based on thermal stability achieved with TEC controller and optimum connector termination. Assumes absence of modehopping and LD set at full output setting.

⁶ Fiber core size intrinsic bandwidth may limit the operating wavelength range.

Standard Specification: Fiber to Fiber Combiner

Wavelength band (nm)	400-410	440-490	510-543	560-595	633-660			
Fiber type	3/125 um for SM or PM fiber							
Return loss	40 dB							
Insertion loss ¹	< 1.5 dB for 3 color combiner, < 2.2 dB for 4 color combiner, < 2.8 dB for 5 color combiner							
ER	> 18 dB for 3 color combiner, > 15 dB for 4 and 5 color combiner							
Operating temperature	-20 to +60°C							
Dimensions	18 x 17 x 14 mm for 3 color combiner block, 18 x 32 x 14 mm for 4 and 5 color combiner block							

¹ Excluding connector insertion loss.

Ordering Information For Custom Parts

OZ Optics welcomes the opportunity to provide custom designed products to meet your application needs. As with most manufacturers, customized products do take additional effort so please expect some differences in the pricing compared to our standard parts. In particular, we will need additional time to prepare a comprehensive quotation, and lead times will be longer than normal. In some cases non-recurring engineering (NRE) charges will be necessary. These points will be carefully explained in your quotation, so your decision will be as well informed as possible. We strongly recommend buying our standard products.

Questionnaire For Custom Parts

- 1. What wavelengths are you interested in?
- 2. What power levels are required?
- 3. What type of fiber is needed? Singlemode, Multimode or PM?
- 4. How long should the fiber be?
- 5. What type of fiber jacket/cabling do you need?
- 6. What connector type are you using?

- 7. Do you need a collimated or focused output beam?
- 8. If a collimated beam is required, what is the desired beam diameter?
- 9. If a focused spot is required, what is the desired spot size and working distance?

Frequently Asked Questions (FAQs)

- Q: What wavelength ranges are available?
- A: OZ Optics offers a variety of sources working from 375 nm to 660 nm.
- Q: What output powers are available?
- A: Depending on the wavelength, up to 50 mW is possible with SM and PM. Custom configurations with higher power levels can be manufactured, depending on the laser diode output power facet and fiber used.
- **Q:** Can the RGB system handle higher powers?
- A: Yes, OZ Optics' RGB design can handle up to 200 mW. For higher power applications a custom design can be done to handle up to 2 W, with large core multimode fiber.
- **Q:** Do you offer RGB sources that can combine more than three wavelengths?
- A: Yes, systems that combine up to five different wavelengths can also be made.
- Q: Can OZ Optics manufacture sources using a customer supplied laser diode and/or fiber?
- A: Yes, please provide OZ Optics with detailed information.
- Q: Does OZ Optics offer higher power sources than what is standard on the data sheet?
- A: Yes, please provide OZ Optics with the requested fiber output power and fiber type and we'll work with you to find a solution.
- Q: Why do you recommend integrated systems rather than individual sources and combiners for visible wavelengths?
- A: For visible wavelengths the fiber core size is 4 microns or smaller. For such small sizes, mechanical tolerances may result in over 1 dB (20%) losses at the receptacle interface. Using an integrated system avoids this issue.
- **Q:** Can I control the output power of each RGB wavelength source?
- A: Yes, output power for each source is adjustable via individual potentiometers, allowing the customer a wide range of colors.
- Q: Can a RGB source be made to deliver a collimated or focused beam?
- A: Yes, we can add a collimator or a focuser to the output end of the pigtailed fiber delivery system.
- Q: Can we offer a RGB combiner with built-in optical shutter or blocking attenuator?
- A: Yes, we can customized to include optical shutter, or optical variable attenuator or any other specials features. Contact OZ Optics to provide your product requirements.